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There is considerable interest in the development of one-dimensional mathematical models for 
two-phase flow in which the velocities of the two phases are unequal. Many such models have 
included among their assumptions that of equality of the two phase pressures. In general, the 
system of equations obtained in these models exhibit non-hyperbolic behavior, signifying that 
the system is unstable to short-wavelength pertubations. The mathematical initial value 
problem for such a non-hyperbolic system is ill-posed, and it is not clear what the correct 
boundary condition specifications are (if any such exist) in such a case. Therefore, models 
which are hyperbolic in structure for the flow regimes of interest are sought, in the interests of 
simplicity, and of a better understanding of how to solve problems and interpret the results. 

One such approach which has been presented recently (Banerjee et al. 1978; Mathers et al. 

1978; Agee et al. 1978) allows the pressures in the two phases to vary independently. The 
dependent variables in this "UVUTUP" model are seven in number: urn, h~, pro, u2, h2, P2 and a. 
The required differential equations are obtained from the conservation equations for mass, 
energy and axial momentum in each phase, together with the interfacial jump conditions for 
these three quantities. Of the three interfacial equations, one is algebraic, and the other two 
contain only one differential term each (assuming the various interfacial terms mu, rkt, qkl, Ukl, 

hkl, P d  to be algebraic in form), namely (Pll -p21)Oa/Ox and (Pit -p21)Oa/at respectively. Here 
Pk! is the pressure in phase k at the interface. One combines these last two equations to obtain 
the seventh, void propagation equation. This is, in effect, achieved by eliminating one (or one 
combination) of the interracial transfer terms from the system. The resultant system is 
essentially one of two quasi-independent, single-phase flows in variable-area channels, con- 
nected through the seventh, void propagation equation. 

This method has been criticized on a number of points. Firstly, the combination used to 
obtain the void propagation equation is not unique; any arbitrary combination of the two jump 
conditions apparently will serve. Secondly, the void propagation velocity obtained in this way 
does not appear to be physically meaningful. Thirdly, objections have been raised to the use of 
the interfacial jump equations to close the system; logically, these should be considered as 
constraints on the interfacial transfer rates, and the information required to close the system 
should come from independent physical arguments (Bour6 1978). 

We outline here one possible method for closing the equation set which is not subject to 
these criticisms. The resultant set of equations is six in number, and will be seen to be 
hyperbolic provided the assumptions of the physical closure model are satisfied. 

We begin by writing the cross-sectionally averaged conservation equations for each phase, 
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and jump conditions, as: 

o +O 
OlklOk - ~  OlkPkUk ---- Fr~I III 

O, 0 c)pk ~ Oak 
o-t ~kOk"k + TX ~OkU~2 + ~ -57 + (Pk - Pk,~ ~ = r~ ,  + r{w I21 

OlkpkEk + ~X OlkPkUkEk Opk . Oak [31 

2 

F~ = 0 [41 
k = l  

2 ~, F~ + p~ Oak -~-- = 0 I51 
k=l  

2 Oak 
r ~ -  p~ ~ = 0 [61 

k = l  

where Ek = hk + 1]2Uk 2, subscript I refers to the interface, and subscript w to wall and external 
source terms. The Fkw and Fu terms contain the wall and interface mass, momentum and 
energy transfer rates. We have assumed, for simplicity, constant cross-sectional area, and have 
neglected derivatives of rk and qk. Surface tension has been neglected in [4]-[6]. We shall also 
assume that the I'kl terms are algebraic in form (i.e. they do not depend on derivatives of the 
dependent variables). The transverse momentum equations, in the same notation, are 

2 

F~I + F ~  = 0. and ~ r~1 = 0. 
k=l  

If we search for physically derived equations to close the system, one possible choice is the 
equations of conservation of transverse momentum, especially in cases (e.g. stratified flow) 
where there is asymmetry of the flow in the transverse direction. Considering first the 
interfacial transverse momentum jump condition, we find that by neglecting the terms cor- 
responding to the interracial stress difference (in which case F~I = (-1)pkl), this equation 

reduces to p~ = P2t( = Pl). That is, the pressures in the two phases are equal at the interface. 
This immediately reduces the other jump equations [5] and [6] to purely algebraic form, so that 
all four jump equations may be considered simply as constraints on the interfacial transfer 
terms. 

The remaining closure information comes from the transverse momentum conservation 
equations in each phase. Neglecting inertial (derivative) terms, these are written in the form of 
simple force balances. These relate the external forces, interracial and wall stress terms and the 
pressures at the wall and the interface, through coefficients dependent on the geometry. By 
making suitable assumptions about the geometrical coefficients and the pressure distribution 
across each phase, we may write these equations to define Pk-  Pt in terms of the dependent 
flow variables. These equations will, of course, be specific to the flow pattern assumed. 
Furthermore, by subtracting these equations, we obtain an expression of the form 

P~-P2 = / (ub  u2, hi, h2,pbp2, or). [7l 

This expression, together with [1]-[3], the state equations, and appropriate models for the F 
terms, forms a closed system of equations with six degrees of freedom. 
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This procedure might be applied to a variety of two-phase flow problems. The simplest such 

case is that of horizontal stratified flow in a rectangular channel. In this case, P~-Pl = 
- ap~gH/2 and P2 - Pl = (1 - a)p2gH]2, where H is the height of the channel, and phase 1 is the 
vapour (low-density) phase. That is, the pressure drop across each phase is equal to the weight 
of the phase in cross section. This hydrostatic assumption will, of course, fail for high-velocity 
flows, as does the assumption of a nearly flat stratified flow. The resulting equations are similar 
to those of the UVUTEP model used by a number of investigators, with the addition of the 

(p~-pl)OadOx and (Pk--Pl)aOtk/Ot terms. These terms must be included if the tendency of 
liquid to flow towards the lowest available point is to be described. The pressures in the two 
phases differ by the gravitational "head" [ap~ + ( l -  ~)p2]gH/2. This introduces a number of 
new terms into the equations, due to the dependence of f on h~, hE, pj, P2 and a. However, if 
we assume that X/(gH) is small compared to the sound speed in either phase, most of these 
terms may be neglected; only the dependence of f on a is significant. 

The approximate equations derived in this way are of the same form as [1]-[3], where we 

make the substitutions pE=Pl, pl-p l l  =-aplgH[2, and P2-P2! =(1-a)(2p2-pDgH/2. A 
number of terms, of order gH/ak 2 (where ak 2 is the sound speed in phase k), must be neglected 
in order to obtain this simplified form. 

We have performed a characteristic analysis for the more "exact" model, in which the 
neglected terms mentioned above have been retained. The characteristics are the roots of the 
polynomial equation 

(A - u0(A - u2)[A(A - u02(A - u2) 2 + B(A - u2) 2 + C(A - u2) 2 + D] = 0 

where 

2 C~P2 2 A = ( l _ ot )pla12 + ctp2a22 + a (  l _ ot ) [  a2 -~22 - al Opl ] g H  T 

@l gH 20P2 gH 2 
"=-( ' -a '[Pla '2a22+aa22(2~-a '2"~l)- -2--a( l -a ' (p2-a2 0h2)( 2 ) ]  

C=_ot[~a,2022+(l_ot,a 2(2pl_a22.~2h2) g__~_~_a(l_oz)(pl_~ 2~P1"~ 

D=a(l_a)[a,2022(p2_pOgH_{aa22(p,_~ 20p~'~ 20p2~'l{g H\2] ,,1 ~gh,} - ( 1 -  a)a12(p2- a2 -0-~2] ~--2-.] J" 

[8] 

We may make use of the fact that gH ~ ak 2 to obtain the following approximations to the roots: 

where 

A = Ul, u2, u' __ V, u* -- a* 

and 

U' = [(1 --  Oe)pl//1 + Oefl2//2]/p* 

u* = [(1 - a)plu2 + aOEUdlo* 

V2 = (1- °t ) [ (P2 - P,)gH - ~-~ ( u, - u2)2 

1 l 

p* = (1 - c~)pl + ~ 

(The approximate characteristic roots for the simplified equations described above are identical 
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with these, to this order of approximation.) 
The last pair of roots, u*__a*, represent the propagation of sound waves. The mixture 

sound speed a* is not the same as those obtained in the cases of the equilibrium and the 
equal velocity unequal-temperature models; al < a* < a2, and in fact, except at very low o~, 
a * - a t .  This appears to be in good agreement with experimental measurements for stratified 
and annular flows and is consistent with that presented elsewhere (Wallis 1969), but is in sharp 
contrast with the much lower sound speed obtained in the homogeneous equilibrium model, 
which is applicable to strongly mixed flows. The translation velocity associated with these 
sound waves, u*, is also very nearly equal to u~. Thus the propagation of sound waves is 
dominated by the vapour. 

The other pair of roots, u'__+ V, represent the propagation of surface waves. Here u' - u2, 
and as expected, the liquid phase dominates. We note that V is real, and therefore that the 
system is hyperbolic, only when 

(u~ - u2)Z < ( ~  + l ;f~ )(pz- pOgH. [10] 

This is the long wavelength limit of the classical Kelvin-Helmholtz criterion (Milne-Thomson 
1960, p. 405) for the stability of the interface. Note that the difference between the long- and 
short-wavelength limits is due to the fact that the assumption of linear variation in pressure at a 
cross section is valid only when the height is small compared to the wavelength. Therefore the 
assumptions made in deriving [8] are only adequate for long waves. It is however, interesting to 
note that the model fails to be hyperbolic when the physical assumptions of the model (i.e. 
almost flat stratified flow) fail. The inadequacy of the model in describing short waves may 
perhaps be less serious than it appears, since for thermalhydraulic computations one is 
interested mainly in the longer scale lengths, and a volume-averaging process is either explicitly 
or implicitly performed to remove short scale length variability. 

At the point at which this stratified flow model becomes non-hyperbolic, the dispersion 
relation for small-amplitude sinusoidal perturbations predicts that short wavelength surface 
waves will grow exponentially in amplitude. (Note that for wavelengths short compared to the 
typical gradient scale length, the dispersion relation is identical with the characteristic equation 
[8].) We might perhaps interpret this instability as representing a transition between two flow 
patterns. As an example, if when the constitutive terms, and/or steep gradients in the flow 
variables, are taken into account, the waves which grow most rapidly are of long wavelength. 
then we might expect the flow pattern to change to intermittent or slug flow. Such a more 
detailed dispersion analysis is of considerable interest, but is unfortunately rather ardous for 
hand computation. 

For computational purposes, the simplified model, in which the only remaining effect of the 
unequal phase pressures appears in the (Pk--Pkt) terms, provides virtually identical results to 
the more complete version. This points up the fact that the significant new feature of the 
UVUTUP model is not that the phase pressures are unequal, but that their derivatives are 
unequal, as reflected in this case by these (Pk --Pk~) terms. The practical utility of this particular 
model is probably small, since flat stratified flows are of limited interest. However, it is possible 
that it might be made more useful through the addition of other derivative terms (e.g. "virtual 
mass" terms), to allow the description of flows with large amplitude waves present. 

In conclusion, one method of closing the equation set, which describes stratified two-phase 
flows, using information from the equations of conservation of transverse momentum, has been 
presented. This approach answers some of the objections raised to the UVUTUP system, while 
retaining most of its major features. It is hoped that similar methods can be applied to other 
flow regimes, such as, for example, dispersed flows (Stuhmiller 1977). A more detailed 
investigation, involving a wider variety of flow regimes, is planned. 
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